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Chapter 3

A Time-Varying Parameter Model for

Local Explosions

3.1 Introduction

Many financial and economic time series display phases of locally explosive behaviour

that is followed by a burst or sharp mean-reverting dynamics. This stochastic behaviour

is especially prevalent in financial asset prices, stock indices and exchange rates. The lit-

erature on rational expectations models for asset pricing typically describe the asset price

process as the sum of a fundamental value process and aforementioned locally explosive

process. The second process is then defined as a speculative bubble, see for instance Blan-

chard and Watson (1982), West (1987), Diba and Grossman (1988) and more. The bubble

is considered to be an explosive nonstationary process and its presence is tested via unit

root and cointegration tests. However, Evans (1991) noted that periodically collapsing

bubbles can cause the bubble paths to look more like a stationary process, making it diffi-

cult for regular tests to detect the existence of bubbles. Using recursive testing techniques,

evidence for the existence of a speculative bubble has been found by for example Phillips

et al. (2011) and Homm and Breitung (2012) in the Nasdaq real price index and Phillips

and Yu (2011) in the U.S. house price index, the price of crude oil and the spread between

Baa and Aaa bond rates.

A different approach has been proposed by Gouriéroux and Zakoı̈an (2013) who de-

scribe speculative bubble dynamics using a noncausal autoregressive process of order
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one with Cauchy innovations. This specification is able to model speculative bubbles

as in reverse time the model is a causal autoregressive process of order one with a fat

tailed innovation distribution, and thus produces large spikes followed by mean reversion.

From the calendar time perspective such dynamics are observed as exponential explosions

followed by sudden collapse. The noncausal approach to bubble modelling has been ex-

tended to stable distributed innovations in Gouriéroux and Zakoı̈an (2017) and to higher

order mixed causal and noncausal linear models in Fries and Zakoı̈an (2017). A difference

with the rational expectations approach is that noncausal models work within a stationary

framework, which allows for the derivation of many theoretical results. Gouriéroux and

Zakoı̈an (2013) show that the sample autocorrelation converges to a number smaller than

one in absolute value. It demonstrates that a unit root test generally rejects the unit root

hypothesis and thus will be unable to identify the presence of speculative bubbles. More-

over, they indicate the possibility of calculating and predicting future bubble behaviour

and show the existence of moments. A major disadvantage of the noncausal approach is

its computational challenge. Distinguishing causal and noncausal components is based

on extreme value clustering, see the discussions in Fries and Zakoı̈an (2017). The predic-

tion of these components depends on computational methods such as Metropolis-Hasting

or sampling/importance resampling, see Gourieroux and Jasiak (2016). In addition, the

models are unable to distinguish the potential speculative bubble from the fundamental

value. The noncausal models allow for only one generic type of bubble baseline path for

a given set of parameters.

We introduce an observation driven model with time varying parameters designed as

a new approach to modelling multiple speculative bubbles. As in the literature on rational

expectations, our proposed model splits the asset price into a sum of two processes. The

first process represents the fundamental value and can be modelled by any contracting

or mean reverting process, while the second process represents the bubble effect charac-

terised by the typical exponential increase followed by a burst. We provide various bubble

burst conditions and discuss their respective merits and shortcomings. The advantage of

using such a specification is that we can filter data into its fundamental value and a po-

tential speculative bubble. Furthermore, the sum of the two processes is very flexible

due to the joint dynamics of the individual components and can describe various baseline
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paths for the same set of parameters. Finally, the model has a conventional observation

driven specification, which implies that parameter estimation can rely on the method of

maximum likelihood where the likelihood function is obtained via the prediction error de-

composition. It further implies that point predictions, confidence intervals, bubble burst

probabilities, bubble emergence probabilities, expected bubble life times, and more, can

be derived straightforwardly.

Similar to the noncausal literature our model describes locally explosive behaviour in

a strictly stationary framework. Due to earlier work in Blasques and Nientker (2017) we

can immediately show that the model admits a stationary ergodic and φ-mixing solution

under very mild conditions. Additionally, in this paper, we prove that the model as a

filter also admits a stationary ergodic and mixing solution and that any initiated sample

path converges to this solution. The derivations of these results are nonstandard because

the filter contains a discontinuity, rendering classical contraction results such as those in

Bougerol (1993) infeasible. The results are then used to obtain consistency and asymp-

totic normality for our maximum likelihood estimator on the parameters that enter contin-

uously in the likelihood. In a simulation exercise we show that other parameters are well

behaved.

The rest of the paper is structured as follows. Section 3.1 introduces our modelling

framework for local explosions. In Section 4.3 we study probabilistic and statistical prop-

erties of the model. Evidence from simulations and a real time series are provided in

Section 3.4. Concluding remarks are in Section 3.5. The proofs are presented in the

Appendix.

3.2 Model for Local Explosions

Our model decomposes the asset price Xt into a sum of three elements

Xt = µt + bt + εt, (3.1)

where µt is the fundamental value of the asset price, bt is the value of a potential spec-

ulative bubble and εt is an error term. The error εt an element of an independent and
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identically normal distributed sequence

(εt)t∈Z ∼ NID(0, σ2), (3.2)

where σ is a strictly positive constant. The fundamental value µt is defined as the value

of the asset price if no speculative bubbles were to exist. The main focus of this paper is

on describing bubble dynamics. Hence we consider a basic observation driven updating

equation for the fundamental value, that is

µt = δ + βµt−1 + γ(Xt−1 − µt−1 − bt−1), (3.3)

where δ, β and γ are fixed unknown parameters. The dynamics for the fundamental

value are mean reverting if |β| < 1, but partially correct by a factor γ for the past error

εt−1 = (Xt−1−µt−1− bt−1). This updating equation can be interpreted as an observation

driven analogue of the parameter driven local level model in Chapter 2 of Durbin and

Koopman (2012) and can also be obtained when using a score updating rule for the mean

as in Creal et al. (2013). Many other dynamic processes for the fundamental value can also

be considered. The model specification (3.3) can be augmented with more lags of the µ

and ε processes, similar to a stationary autoregressive moving average (ARMA) process.

Also, we can adopt a completely exogenous stationary process for µt which is potentially

based on economic or financial reasoning. We will maintain the stationary framework

explored in the non-causal literature. In practice, this means that one would have to add

a nonstationary component when the objective is to model bubles in non-stationary time-

series, such as asset prices which are typically nonstationary. Alternatively, one could

allow the fundamental value to be non-stationary, such as a random walk. This is however

outside the scope of this paper.

The speculative bubble process is nonnegative and defined according to the following

updating equation

bt = (ω + αbt−1)1{survival condition}. (3.4)

To ensure nonnegativity of bt we impose ω > 0, while α can be any nonnegative num-
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ber, but typically is thought of as a parameter that is greater than one. This implies that

the bubble process satisfies an exponential increase, as is commonly observed in locally

explosive time series. The bubble bt then diverges to infinity, if not for the indicator

function, which forces the bubble to collapse down to zero if the survival condition is no

longer satisfied. As with the fundamental value process, many options are available for

the survival condition. Let Ft = (Xt, µt, bt) be the information obtained at time t. Then a

general survival condition that encompasses a variety of useful model choices is given by

thresholded functions

1{g(Ft−1) < 0}, (3.5)

where g is some real-valued function, which we will call the survival function. A few

example choices for the survival function are given by

E1 g(Ft−1) = Xt−1 − c, for some c ∈ R.

E2 g(Ft−1) = Xt−1 − µt−1 − c, for some c ≥ 0.

E3 g(Ft−1) = bt−1 − kXt−1, for some k ∈ [0, 1].

E4 g(Ft−1) = bt−1 − k(µt − c), for some k ≥ 0 and c ∈ R.

The simplest survival function E1 lets the bubble grow until the asset price reaches a fixed

level c. This allows for various bubble sizes bt, as Xt−1 also depends on the fundamental

value µt−1 and the shock process εt−1, but does describe time series in which the asset

price always drops from approximately the same critical level. To allow for varying levels

one can use a survival function such as E2. This function allows the bubble to grow

as long as the difference between the asset price and the fundamental value is not too

large, which leaves flexibility for the actual critical level. Examples E1-E2 have less

control for the emergence rate of bubbles. If a bubble just collapsed, then Xt−1 is equal

to its fundamental value in expectation, which has dynamics that are potentially likely

to immediately initiate another bubble. In example E2 for instance, if bubbles are very

large, then cwill be relatively large with respect to the dynamics of the fundamental value.

When the bubble collapses at time t− 1, then g(Ft−1) = εt−1− c, which means that there

is a very high probability of a new bubble being created.
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To gain more control of bubble emergence dynamics one can use more involved sur-

vival functions such as example E3. Here a bubble collapses if it makes out more than a

fraction k of the total asset price. This allows for various bubble sizes and critical levels

of the asset price as Xt−1 depends on the fundamental value and the shock process. In

fact, a higher fundamental value allows for larger bubbles, a result that can be argued to be

appealing as a high fundamental price can be one of the driving reasons for the existence

of the bubble. Example E3 can control for the emergence of bubbles, asXt−1 < 0 implies

that the break condition is not satisfied for any possible value of bt−1 and thus no bubble

is created. A period of negative asset value thus ensures no bubble is created during that

time, hence E3 can be used well to describe time series which contain explosive and non-

explosive windows. Finally, example E4 captures the same effects as E3, but elaborates

on the connection between the fundamental value and the bubble process. The bubble size

and collapse and emergence times are now all directly related to the fundamental value.

If the fundamental value is below the threshold c, then no bubbles are created. If the fun-

damental value goes above c, then a bubble is created which grows until its size is larger

than k times the difference between the fundamental value and c. There are two general

driving forces that cause the bubble to burst. Firstly, the fundamental value process can

stay above c for an extended period of time, but as it is mean reverting while the bubble

is exponentially increasing, the bubble process grows much faster and thus we eventually

observe that bt−1 ≥ k(µt − c). Secondly, the fundamental value can fall quickly below c

again, which immediately makes the bubble collapse. Combinations between these two

collapse reasons are also possible, allowing for a wide variety of bubble sizes and overall

asset price dynamics.

3.2.1 Bubble variety

The bubble process described in (3.4) might appear to be rather restricted at first sight, as

conditional on the current value of the bubble the updating equation allows for only two

possible values, all of which are within a countable space. However, the joint dynamics

between the fundamental value and the bubble process can cause the asset price to be very

flexible in describing various bubble sizes, shapes and frequencies. This is especially true

for examples E3 and E4, which we demonstrate in Figure 3.2.1 by examining some of the

34



3.2. MODEL FOR LOCAL EXPLOSIONS

possible impulse response functions (IRFs) for the model described in equations (3.1)-

(3.5) with survival condition E4. Figure 3.2.1a illustrates how a small impulse that does

Figure 3.2.1: Several impulse response functions for the bubble model as described in equations
(3.1)-(3.5) with survival condition E4.
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(d) A flat bubble that spends some time near its
peak before collapsing.

not push the fundamental process above the threshold c creates no speculative bubble. The

resulting dynamics in the asset price are therefore just the mean reverting ones from the

fundamental value process. In Figure 3.2.1b we have increased the size of the impulse,

which results in a typical unique bubble characterised by its exponential increase followed

by a sudden collapse. The collapse is caused by the fundamental process reverting back

to its mean lower than c. If we further increase the size of the impulse as in Figure 3.2.1c,

then we obtain a similar initial scenario, but now the bubble collapses even though the

fundamental value is still above the threshold, because its size is larger than k(µt−1 −

c). This results in another smaller bubble immediately created once the first bubble has

collapsed. Finally, Figure 3.2.1d illustrates the effect of an impulse size that causes the

mean reverting fundamental process dynamics to approximately cancel out the explosive

bubble dynamics. The resulting joint dynamics for the asset price show a bubble that

spends some time at its peak level before collapsing.

The different possible joint dynamics in the asset price as illustrated in Figure 3.2.1
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are often encountered in financial time series. Figure 3.2.2 exhibits some time series for

which evidence for the existence of a speculative bubble has been found. The bubble

shapes in each time series are remarkably different. Figure 3.2.2a plots the monthly Nas-

Figure 3.2.2: Several time series with evidence for the existence of a speculative bubble. Panel a is
the monthly Nasdaq real price from January 1973 to May 2005, Panel b is the daily Bitcoin/USD
exchange rate from February 20, 2013 to July 18, 2013 and Panel c is the daily spread between
US Baa bond rates and Aaa bond rates from January 3, 2006 to July 2, 2009.
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daq real price from January 1973 to May 2005, studied in Phillips et al. (2011). This

time series contains a single bubble where the exponential increase is followed by an

immediate burst and no new explosive behaviour, see the similarity with the impulse re-

sponse function (IRF) in Figure 3.2.1b. Figure 3.2.2b depicts the daily Bitcoin/US dollar

exchange rate from February 20 to July 18 in 2013, studied in Hencic and Gouriéroux

(2015). This time series contains a classic bubble, which collapses on April 10. However,

different to Figure 3.2.2a, it is followed immediately by a new smaller exponential in-

crease and downwards burst, analogous to the IRF of Figure 3.2.1c. Figure 3.2.2c shows

the daily spread between US Baa bond rates and Aaa bond rates from January 3, 2006 to

July 2, 2009, studied in Phillips and Yu (2011). Here we observe a speculative bubble that

increases exponentially, but then spends some time around its peak before collapsing, as

in the IRF of Figure 3.2.1d. All time series contain windows where no speculative bubble

is apparent, as in the IRF of Figure 3.2.1a.

36



3.3. PROBABILISTIC AND STATISTICAL ANALYSIS

3.3 Probabilistic and statistical analysis

In this section we study the probabilistic properties of our model as defined in equations

(3.1)–(3.5). The bubble model contains several irregular components making the results

in this section nonstandard. Firstly, the parameter α is allowed to be greater than one,

which means that the bubble model is locally explosive on its sample space. Secondly,

the updating equation for the bubble process (3.4) contains a discontinuity. These as-

pects imply that typical stability properties necessary for almost everywhere contraction

conditions or smoothness assumptions do not hold, which means that it is not possible

to employ standard stability theory results as developed in Bougerol (1993) or Meyn and

Tweedie (1993). Instead we rely on previous work in Blasques and Nientker (2017) that

provides stability results for resetting dynamic systems. Such a system is defined by an

updating function that sometimes resets to a fixed, possibly random, value regardless of

the past. These dynamics are present in the bubble process when the bubble collapses

back to zero.

We split the parameter vector in two sub-vectors (θ, λ) which belong to the parameter

space Θ × Λ. Here θ contains all the parameters that enter continuously in (µt, bt) and

λ contains the remaining parameters. Among the parameters (σ2, δ, β, γ, ω, α), it is clear

that σ2 is always an element of θ, while the remaining parameters may be elements of

θ or λ depending on the chosen survival function g. If the survival function depends on

the bubble process, then (α, ω) belong to λ and if g is nonconstant in the fundamental

value process, then (δ, β, γ) belong to λ. We examine the examples from Section 3.2 as

an illustration.

E1 g(Ft−1) = Xt−1 − c, then θ = (σ2, δ, β, γ, ω, α) and λ = c.

E2 g(Ft−1) = Xt−1 − µt−1 − c, then θ = (σ2, ω, α) and λ = (δ, β, γ, c).

E3 g(Ft−1) = bt−1 − kXt−1, then θ = (σ2, δ, β, γ) and λ = (ω, α, k).

E4 g(Ft−1) = bt−1 − k(µt − c), then θ = σ2 and λ = (δ, β, γ, ω, α, k).

Deriving consistency and asymptotic normality for λ is generally difficult. Therefore we

approach the problem by deriving these results for θ conditionally on a calibrated value
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of λ. This means that we will work with functions f in the Banach space L∞(Θ,R), we

write ‖f‖Θ for the supremum norm. The parameter space Θ is assumed to be compact

throughout this section.

We show in Section 3.3.1 that the model admits stable solutions under lenient restric-

tions on the parameters and survival function. We then continue to analyse the model

as a filter in Section 3.3.2 and show that filter paths converge to a stable solution. We

derive the likelihood in Section 3.3.3 and provide consistency and asymptotic normality

for a maximum likelihood (ML) estimator in Section 3.3.4. All the proofs can be found

in Appendix 3.6.

3.3.1 The model as a data generating process

This section provides results that guarantee that our model generates (strictly) stationary

ergodic data with finite moments. Moreover, we show that partial solutions converge to

the stationary sequence. These results will be required later on to show consistency and

asymptotic normality for the ML estimator in a correctly specified model.

Data generated by our model partially adheres to very standard dynamics, as equation

(3.1) holds for such data and thus (3.3) simplifies to

µt = δ + βµt−1 + γεt−1. (3.6)

The fundamental value process therefore is an autoregressive process of order one with

Gaussian errors, a specification that is well studied and known to have stable solutions.

We need the following assumptions to ensure the stability results:

DGP 1. The parameter space satisfies |β| < 1.

DGP 2. Let b ≥ 0 and µ, ε ∈ R. There exists a set S ⊂ R × R of positive Lebesque

measure such that the survival function satisfies

g̃(ε, µ) := inf
b≥0

g(µ+ b+ ε, µ, b) ≥ 0 for all (ε, µ) ∈ S.

Assumption DGP 1 is standard in the literature on autoregressive processes. Condition

DGP 2 seems complicated but essentially requires that the bubble process always has
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positive probability to collapse next period, regardless of its current and past values. If this

were not the case, then there are scenarios in which the bubble is guaranteed to continue

growing, something that can be considered unnatural. Assumption DGP 2 is usually easy

to verify.

Lemma 3.3.1. Assumption DGP 2 holds if g̃ is a continuous and surjective function.

PROOF. The set [0,∞) contains an open subset, say O. Since g̃ is surjective g̃−1(O) is

nonempty and by continuity it is open. Any nonempty open subset in Euclidean space is

of positive Lebesque measure. �

We verify condition DGP 2 on our examples E1–E4 as an illustration. If our survival

function is given by E1 then g̃(ε, µ) = µ+ε−c, if our survival function is given by E2 then

g̃(ε, µ) = ε− c, if our survival function is given by E3 then g̃(ε, µ) = k(µ+ ε) as k ≤ 1

and finally if our survival function is given by E4 then g̃(ε, µ) = −k(δ + βµ + γε − c).

All of these functions are continuous and surjective and thus condition DGP 2 is satisfied

for all our examples.

Theorem 3.3.2. Suppose that assumptions DGP 1–2 hold. Then there exists a unique

causal stationary ergodic solution ((Xt, µt, bt))t∈Z to model (3.1)–(3.5). Moreover, any

other solution ((X̂t, µ̂t, b̂t))t∈N initialised at (X̂1, µ̂1, b̂1) almost surely converges expo-

nentially fast to the stationary ergodic one, that is

∥∥∥(µ1, b1)− (µ̂1, b̂1)
∥∥∥

Θ

eas→ 0 as t→∞.

Theorem 3.3.6 establishes the existence of a unique causal solution to our model for

each choice of θ that satisfies assumptions DGP 1–2. One can simulate an arbitrary close

approximation of this solution by using any initialisation of choice and discarding the first

portion of the time series.

We finalize this section by providing a result on the existence of moments for the

solution found in Theorem 3.3.2. Showing such existence is dependent on the chosen

survival function. We will use example E4 in our application, so we derive the result for

this survival function.
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Corollary 3.3.3. Suppose that assumptions DGP 1 holds and that the survival function is

given as in E4. Then the unique stationary ergodic solution has a uniform n′th moment

for all n ∈ N, i.e. E‖(Xt, µt, bt)‖nΘ <∞.

3.3.2 The model as a filter

This section focusses on the model as a filter for general data (Xt)t∈Z. Such a filter

will always have to be initialised at some values µ̂1 and b̂1, as the fundamental respec-

tive bubble processes are unobserved. We impose conditions that ensure that our filtered

model admits a unique stationary ergodic solution that is twice continuously differen-

tiable, has bounded moments and that any initialised process converges to. The first set

of conditions assume structure on the dependence between the (Xt). We write log+(x) =

max{0, log x} and F ts for the σ-algebra of (Xs, . . . , Xt) for any s ≤ t ∈ [−∞,∞].

FLT 1. The data sequence (Xt)t∈Z is stationary ergodic and has a finite log moment, that

is E log+ |Xt| <∞.

FLT 2. Each Xt is absolutely continuous with full support pdf. If A ∈ F−1
−∞ and B ∈ F∞0

are events of positive probability, then P(A and B) > 0.

FLT 3. The conditional distributions Xt | Xt−1, . . . , Xt−n are absolutely continuous and

of bounded density uniformly over n ∈ N and almost all possible past values with respect

to Lebesque measure.

Condition FLT 1 is standard and necessary, one cannot expect to obtain stationary

ergodic filter paths if the original data sequence is not so. A log moment is implied by

the existence of any regular moment by Jensen’s inequality. Assumption FLT 2 is less

common, but has an intuitive interpretation. It requires the sequence (Xt)t≥0 to be non

exclusive, that is, conditional on the past some future events are more likely than others,

however, anything that was possible unconditionally can still happen. Assumption FLT 3

is a technical one that is satisfied for most reasonable distributions. We realise conditions

FLT 2 and FLT 3 are unusual in the literature. We provide the following result to illustrate

that many stochastic processes satisfy these conditions.
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Proposition 3.3.4. Suppose (Xt)t∈Z is a real valued stationary ergodic solution of a

Markov chain Xt = f(Xt−1, ζt). If f(x, ·) is a continuously differentiable function for

all x ∈ R with derivative bounded away from zero for almost all x ∈ R with respect to

Lebesque measure, and (ζt)t∈Z is a sequence of independent, identically distributed and

absolutely continuous random variables such that f(x, ζt) has full support for all x ∈ R.

Then conditions FLT 2 and FLT 3 are satisfied.

Proposition 3.3.4 implies that typical processes such as general AR(1) given by Xt =

h(Xt−1) + εt, or multiplicative specifications of the type Xt = h(Xt−1)εt usually satisfy

conditions FLT 2 and FLT 3. The proposition can also be extended to multivariate pro-

cesses where the data is one of the entries in the vector. This implies processes such as

ARMA or GARCH satisfy our conditions.

As mentioned before, the dynamics of our model rely heavily on the survival function

chosen, specifically whether g is nonconstant in any of its arguments. We provide the

desired results for the most complex case in which g is nonconstant in any of its variables.

We then need the following additional parameter restrictions.

FLT 4. The function g is Lipschitz with derivative bounded away from zero almost every-

where, it is monotone in its first argument, decreasing and continuous in its second argu-

ment and increasing in its third argument. Moreover, the probability P(g(Xt, µ, 0) ≥ 0)

is positive for all µ ∈ R and the inverse of g in its third argument is L-Lipschitz.

FLT 5. The parameters satisfy r := |β − γ| < 1 and the polynomial p(x) = 1 − rx +

γαLx2 has roots outside of the unit circle.

Assumption 4 contains quite some restrictions of the survival function. It can be easily

checked however that these all hold for example E4.

Theorem 3.3.5. Suppose that assumptions FLT 1–4 hold. Then there exists a unique

causal stationary ergodic solution ((µ∗t , b
∗
t ))t∈Z to model (3.3)–(3.5) that is twice con-

tinuously differentiable over Θ. Moreover, any other solution ((µ̂t, b̂t))t∈N initialised at

(µ̂1, b̂1) almost surely converges exponentially fast to the stationary ergodic one, that is,

∥∥∥(µ∗t , b
∗
t )− (µ̂t, b̂t)

∥∥∥
Θ

eas→ 0 as t→∞.
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Finally, if Xt has an n’th moment for some n ∈ N, then (µ∗t , b
∗
t ) has an n’th moment too.

3.3.3 The likelihood

As mentioned in the beginning of Section 4.3 we derive our asymptotic results for θ

conditionally on a calibrated value of λ. The likelihood evaluated at some θ ∈ Θ for

a sequence (X1, . . . , XT ) is the joint density implied by (3.1)–(3.5). The fundamental

value and bubble processes are unobserved, so we choose initialised values µ̂1 and b̂1

which deliver filtered sequences (µ̂t(θ, λ))Tt=2 and (b̂t(θ, λ))Tt=2 according to (3.3)–(3.5).

It follows that

Xt|X1, . . . , Xt−1 = Xt|µ̂t(θ, λ), b̂t(θ, λ) ∼ N(µ̂t(θ, λ) + b̂t(θ, λ), σ2)

and thus prediction error decomposition delivers the average log likelihood as a function

Θ→ R given by

L̂T (θ) ∝ 1

T

T∑
t=2

`(Xt, µ̂t(θ, λ), b̂t(θ, λ), σ2),

`(Xt, µ̂t(θ, λ), b̂t(θ, λ), σ2) := −1

2
log(2πσ2)− 1

2σ2
(Xt − µ̂t(θ, λ)− b̂t(θ, λ))2.

From here on out we will omit mentioning that the plug in processes depend on θ and λ

to keep notation clear.

3.3.4 Asymptotic results

Consistency

The ML estimator of θ is defined as

θ̂T = arg max
θ∈Θ

L̂T (θ).

We need the following conditions to obtain consistency.

CS 1. (Xt)t∈Z is stationary and ergodic with bounded second moment: E|Xt|2 <∞.
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CS 2. The filter vector ((µ̂t, b̂t))t∈N is invertible and converges to a limit process ((µ∗t , b
∗
t ))t∈Z

uniformly over Θ with two uniform bounded moments. That is,

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

eas→ 0 as t→∞ and E ‖(µ∗t , b∗t )‖
2
Θ <∞,

Moreover, the joint process ((Xt, µ
∗
t , b
∗
t ))t∈Z is strictly stationary and ergodic.

CS 3. There exists a unique maximizer θ0 of the limit log likelihood, that is, for every

θ ∈ Θ that is unequal to θ0 we have

E`(Xt, µ
∗
t (θ, λ), b∗t (θ, λ), σ2) < E`(Xt, µ

∗
t (θ0, λ), b∗t (θ0, λ), σ2

0).

The assumptions CS 1–3 are typical conditions used in the theory of M -estimators.

Assumptions CS 1 and CS 2 assume stochastic properties of our model that ensure that a

law of large numbers can be applied. Note that they are both implied by assumption FLT

1 – FLT 5 and Theorem 3.3.5. Assumption CS 3 ensures that the limit log likelihood is

maximised at a unique point θ0, given the fixed parameter λ. Note that the expectations

exist by the moment assumptions in CS 1–2. When the model is assumed to be well

specified and λ is fixed at its true value λ0, then it is often easy to show that this assumption

holds and that the parameter of interest θ0 is the true parameter, that is, the parameter that

corresponds to the data generating process for {Xt}t∈Z. If the model is misspecified,

or λ is set at some arbitrary value λ 6= λ0, then the uniqueness of the parameter of

interest θ0 is harder to establish.1 In this case, the limit parameter θ0 is a ‘pseudo-true

parameter’, i.e. a parameter that minimizes a Kullback-Leibler divergence between the

true conditional density of the data and the model-implied conditional density, see Section

2.3 of White (1994).

Theorem 3.3.6 (Consistency). If assumptions CS 1–3 hold, then θ̂T
as→ θ0.

Theorem 1 establishes the a.s. convergence of the ML estimator θ̂T to the pseudo-true

parameter θ0 which is the unique maximizer of the limit log likelihood or any given value

of λ ∈ Λ. In this sense, the θ0 provides the best Kullback-Leibler approximation to the
1When the uniqueness assumption fails, set consistency can be easily established, thus ensuring that the

ML estimator converges to the limit argmin set; see Lemma 4.2 in Pötscher and Prucha (1997) for standard
conditions that apply here.
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true unknown distribution of the data, for the given value of λ. Naturally, if the model

is correctly specified and λ is calibrated at its true value, then θ0 corresponds to the true

parameter.

Corollary 3.3.7. Suppose that the model is correctly specified and that λ is calibrated at

its true value. If the results of Theorem 3.3.2 can be applied for all θ ∈ Θ, and

E ‖(µt, bt)‖2
Θ <∞.

Then the ML estimator θ̂T converges a.s. to the true parameter θ0.

Asymptotic normality

In what follows, we establish the asymptotic normality of the ML estimator θ̂T as T →∞.

Theorem 3.3.8 focuses on the case of a well specified and correctly calibrated model, and

Theorem 3.3.9 obtains asymptotic normality for a misspecified or incorrectly calibrated

model where λ 6= λ0. We need the following standard assumptions.

AN 1. The conditions CS 1–3 hold and θ0 belongs to the interior of Θ.

AN 2. The limit process (µ∗t , b
∗
t ) is twice continuously differentiable on Θ for all t ∈ Z.

AN 3. {Xt}t∈Z has four bounded moments E|Xt|4 <∞.

AN 4. The Fisher information matrix is invertible.

The following assumption ensures that the filter derivatives converge almost surely

and exponentially fast to limit strictly stationary and ergodic sequences. The exponential

rate for the filter was established in Section 3.3.2. It is clear that the same argument

applies to the derivative processes {∂µ̂t
∂θ
} and {∂b̂t

∂θ
}. In particular, we have again that

{∂b̂t
∂θ
} converges at any rate since it is reset to zero in a finite number of steps with positive

probability, and {∂µ̂t
∂θ
} converges exponentially fast due to its autoregressive nature.

AN 5. The derivative processes are invertible at exponential rates and feature four bounded

moments, ∥∥∥(∇0:2µ̂t,∇0:2β̂t)− (∇0:2µt,∇0:2βt)
∥∥∥

Θ

eas→ 0 as t→∞ ,

and E
∥∥(∇0:2µt,∇0:2βt)

∥∥4

Θ
<∞.
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Theorem 3.3.8. (Asymptotic Normality: Correct specification) Let assumptions AN 1–5

hold. Suppose further that the model is well specified and that λ = λ0. Then

√
T (θ̂T − θ0)

d→ N(0, I−1(θ0)) as T →∞ ,

where I−1(θ0) denotes the inverse information matrix.

We need the following additional assumption to obtain asymptotic normality under a

misspecified model.

AN 6. {xt} is near epoch dependent of size−1 on a φ-mixing sequence of size−r/(r−1)

for some r > 2 .

Theorem 3.3.9. (Asymptotic Normality: Incorrect specification/calibration) Let assump-

tions AN 1–6 hold. Then

√
T (θ̂1

T − θ1
0)

d→ N(0,Σ(θ1
0, θ

2)) as T →∞ ,

where

Σ(θ1
0, θ

2) =
(
Eˆ̀′′

t (θ
1
0, θ

2)
)−1(Eˆ̀′

t(θ
1
0, θ

2)Eˆ̀′
t(θ

1
0, θ

2)>
)(
Eˆ̀′′

t (θ
1
0, θ

2)
)−1

.

3.4 Illustrations

In this section we test the descriptive capability of our model and illustrate the access-

ability and ease of further analysis after estimation. We will use our model with survival

function E4 and estimate it on a part of the Bitcoin/US dollar exchange rate. We realise

that the chosen survival function implies that most of our parameters belong to λ, the

vector of parameters that enter discontinuously into the likelihood. Therefore we add a

short simulation study in Section 3.4.1 in which we examine the distribution of our ML

estimator for a representative choice of parameters. Section 3.4.2 contains the estimation

results and further analysis.
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3.4.1 Simulation study

We examine the distribution of the ML estimator for a given parametrization, stated in

Table 3.4.1. This choice represents a medium amount of bubbles of size relative to the

σ δ β γ ω α k c
1.0 0.1 0.95 0.7 0.2 1.03 7 −0.1

Table 3.4.1: Parametrization used for simulation study.

fundamental value process. A typical simulation for the implied model can be found in

Figure 3.4.1. Note that there are windows of locally explosive behaviour, but also times

Figure 3.4.1: An example simulated path for the parametrization of the model described in Table
3.4.1.
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at which no bubbles seem to form. The size of the bubbles is substantially larger than that

of the fundamental value, but not so far as to render its value insignificant compared to

the magnitude of the bubble process.

We estimate the model parameters by maximising the likelihood over an area centered

around the true values. The likelihood however is discontinuous and nondifferentiable,

which means that gradient based optimizing algorithms cannot be applied. Instead we

implement a procedure based on the genetic algorithm in Matlab, which is inspired by

natural selection observed in biological evolution. The algorithm generates a population

of points and then successively selects a partially random subpopulation to be parents to

the next population. We use a total of fifty generations to get near to the optimal point

and then use that as a starting value for a gradient based optimizer to get quicker to the

maximiser. An important observation about our procedure is that the resulting optimizing

algorithm is stochastic. This implies that found parameter values cannot be reproduced,
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however, the algorithm works sufficiently well such that successive estimations on the

same data produce very similar results.

For the simulation we calculate one thousand estimate values, each of which is based

on a sample path of length one thousand. The resulting estimated densities for the ML

estimator are portrayed in Figure 3.4.2. Here we see that all densities, except the one

Figure 3.4.2: Estimated kernel densities for the ML estimator based on one thousand estimate
values, each of which is based on a sample path of length one thousand.
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for k, are close to symmetric with their peak at the true value. The estimator for k has

more inaccuracy than the others, because most bubbles in this parametrization collapse

due to the fundamental process dropping below the threshold c. A path of one thousand

observations contains approximately ten bubbles, so therefore there is relatively little data

to estimate k.
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3.4.2 The BTC/USD exchange rate

The data set that we use is equivalent to the one studied in Hencic and Gouriéroux (2015).

We take the detrended daily Bitcoin/US dollar exchange rate from February 20 to July 18

in 2013, given in Figure 3.4.3. There appears to be a big bubble that collapses on April

10, 2013. Moreover, it is potentially followed by a second smaller bubble. Afterwards it

tends to behave as a standard stable and mean reverting process.

Figure 3.4.3: Detrended daily Bitcoin/USD exchange rate, taken from Hencic and Gouriéroux
(2015).
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We estimate the model parameters as discussed in the simulation study. The results

are given in Table 3.4.2. The estimate of α is relatively large, which means that any

σ δ β γ ω α k c
2.05 −0.25 0.86 1.04 0.44 2.10 2.39 12.29

Table 3.4.2: Parametrization used for simulation study.

potential bubble is highly explosive. Moreover, the value of c implies that the potential

smaller second bubble is mostly identified as the fundamental value moving away from

its mean. These observations are substantiated when we look at the filtered time series in

Figure 3.4.4, note that these are also the in sample one step ahead predictions. Our model

describes only one significant bubble, which is preceded by an increase in the fundamental

value. It then collapses due to the k parameter restriction on bubble size. Afterwards the

fundamental value stays below the threshold c and hence the rest of the time series is

filtered as an autoregressive process. Our model performs well as it predicts the burst of

the bubble on April 10 correctly. It does however underestimate the additional decrease
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Figure 3.4.4: The filtered daily Bitcoin/USD exchange rate, taken from Hencic and Gouriéroux
(2015).
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in fundamental value after the bubble burst.

We compare our bubble model to the nested simpler model in which we set the bubble

always to zero. In that case we have only four parameters left out of eight. The resulting

Akaike information criteria are 646 for the full bubble model and 726 for the simpler

model. Therefore we conclude that including the bubble process adds descriptive power

and thus we prefer that model.

Observation driven parameter varying time series models have two main advantages.

The first one is that they are easy to estimate as the likelihood is accessible through predic-

tion error decomposition as discussed in Section 4.3. The second advantage is that further

analysis is straightforward once the model has been estimated, as we have closed form

formulas for the filtered time series. For example, we can calculate the probability that

the bubble condition in the next period holds. Figure 3.4.5 plots the filtered time series

and these probabilities for some period centered around the bubble. Here we see that the

probability of nonzero bubble values before the bubble start are virtually equal to zero.

As the bubble starts, the probability of a nonzero bubble is almost one. The probability

dips a little for April 8, as the fundamental value on April 7 has gone down a little. The

fundamental value then increases on April 8 however and thus so does the probability for

April 9. When we get to April 10 the probability is again almost zero as the large expo-

nential growth of the bubble has outgrown the fundamental value process on April 9 by

far too much.

The estimated probabilities above are just an example of many possible features that
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Figure 3.4.5: The filtered daily Bitcoin/USD exchange rate around the bubble in the top frame,
and the probability that the bubble condition holds in the next period shifted one period to the
right in the second frame.
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can be predicted. For example, once the model parameters are estimated, one can predict

expected remaining bubble life, the probability that a bubble will emerge at a given time,

or the expected maximal bubble size.

3.5 Conclusion

We have introduced a new observation driven time varying parameter model to describe

locally explosive behaviour in a stationary setting. We do so by splitting the asset price

into the sum of its fundamental value and a speculative bubble. For the sake of simplicity

we have assumed an AR(1) process for the fundamental value and a collapsing AR(1)

for the bubble process. However, these are not binding assumptions and many extensions

and variations are possible. Of course any mean reverting stationary process for the fun-

damental value fits exactly in the theoretic domain presented in the paper. Dynamics can

be changed by using a nonstationary process such as a random walk for the fundamental

value. Most asset pricing data is nonstationary, so this would mean that one does not have

to detrend the data, which makes out of sample forecasting possible. Other possibilities

that could be explored are extensions to the break condition. One could for example add

external stochastics allowing for more structural models that include specific financial or
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economic variables that can help in predicting bubble collapses. Another extension can

be made by changing the sudden collapse in a more smooth exponential decrease. The

dynamics of this model would then be very close to those described in the mixed causal

and noncausal literature.

3.6 Appendix: Proofs

3.6.1 Proof of Theorem 3.3.2

It is straightforward to verify the assumptions of Theorem 3.1 in Bougerol (1993) for the

system defined in equations (3.2) and (3.6). It then immediately follows that there exists

a unique causal stationary ergodic sequence (µt)t∈Z that satisfies (3.6) and that any other

solution (µ̂t)t∈N initialised at µ̂1 satisfies

‖µt − µ̂t‖Θ

eas→ 0 as t→∞.

Next, we substitute equation (3.1) into the survival function to obtain the bubble up-

dating function

bt+1 = φt(bt), where φt(b) = (ω + αb)1 {g(µt + b+ εt, µt, b) < 0} .

We then check Assumption A for Theorem 2.1 in Blasques and Nientker (2017). As-

sumption A1 is trivial and A2 is satisfied by Krengel’s Lemma: a measurable function of

a stationary ergodic sequence produces a stationary ergodic sequence, see Proposition 4.3

in Krengel (1985). For the final assumption A3 we note that φt(b) = 0 for all b ∈ [0,∞),

if

g(µt + b+ εt, µt, b) ≥ inf
b≥0

g(µt + b+ εt, µt, b) ≥ 0.

Therefore Assumption A3 is satisfied if

P
(

inf
b≥0

g(µt + b+ εt, µt, b) ≥ 0

)
> 0.
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This is implied by condition DGP 2, because (3.2) implies that µt and εt are independent

and both absolutely continuous on the real line. Therefore the joint random variable

(µt, εt) is absolutely continuous on R2 and thus P((µt, εt) ∈ S) > 0. We conclude that

there exists a unique causal stationary ergodic sequence (bt)t∈Z that satisfies the bubble

updating process defined in (3.1)–(3.5) and that any other solution (b̂t)t∈N initialised at b̂1

satisfies

∥∥∥bt − b̂t∥∥∥
Θ

eas→ 0 as t→∞.

The final conclusion follows again by Krengel’s Lemma.

3.6.2 Proof of Corollary 3.3.3

The solution for the fundamental process found in Theorem 3.3.2 is given by

µt =
∞∑
i=0

βεt−i−1,

so all moments of µt are finite over Θ as it is a compact space so that |β| is bounded and

the εt are Gaussian and thus have all finite moments. For the bubble process we have

bt = (ω + αbt−1)1{bt−1 < k(µt − c)} ≤ ω + max{αk(µt − c), 0}

and hence moment existence follows from those of the fundamental value process.

3.6.3 Proof of Proposition 3.3.4

We fix some ζ ∈ R and let ξ = f(x, ζ). The fact that f(x, ·) is continuously differen-

tiable implies by the inverse function theorem that it is invertible on a neighbourhood O

around ζ and that the inverse f−1(x, ·) is also continuously differentiable. Moreover, by

assumption, for Lebesque almost all x ∈ R there exists an L > 0 such that |f ′(x, ζ)| ≥ L

and thus f−1(x, ·) is Lipschitz as

d

dξ
f−1(x, ξ) =

1

f ′(x, ζ)
≤ 1

L
.
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The real line is separable, hence we can choose a countable number of disjunct com-

pact neighbourhoods {Ok}k∈N whose union is equal to R and f(x, ·) is invertible on each

neighbourhood as above. A continuously differentiable function on a compact set is ab-

solutely continuous, which in turn implies that it has the Luzin property, that is, sets of

measure zero are mapped to sets of measure zero.

We now prove that Xt is absolutely continuous. Let E ⊂ R be a set of Lebesque

measure zero and let F denote the distribution function of Xt, then by independence of

the ζt we have

P(Xt ∈ E) = P(f(Xt−1, ζt) ∈ E)

=

∫
R
P(f(x, ζt) ∈ E)F (dx) =

∞∑
k=1

∫
R
P(f(x, ζt) ∈ E ∩Ok)F (dx)

=
∞∑
k=1

∫
R
P(ζt ∈ f−1(x,E ∩Ok))F (dx) =

∞∑
k=1

∫
R

0F (dx) = 0,

where we used that E ∩Ok has Lebesque measure zero, f−1(x, ·) has the Luzin property

on each Ok and ζt is absolutely continuous. The absolute continuity of the conditional

distributions follows similarly as by the independence of the ζt and the Markov property

P(Xt ∈ E | Xt−1 = x1, . . . , Xt−n = xn) = P(Xt ∈ E | Xt−1 = x1)

= P(f(x1, ζt) ∈ E) = 0.

Next we show that the conditional densities are uniformly bounded. By assumption, we

know that the density of ζt is bounded by some B > 0. For some ξ ∈ R and η > 0 we

then have

P(ξ < Xt ≤ ξ + η | Xt−1 = x1, . . . , Xt−n = xn) = P(ξ < f(x1, ζt) ≤ ξ + η)

=
∞∑
k=1

P(ζt ∈ f−1(x1, (ξ, ξ + η] ∩Ok)) ≤
B

L
η,

where we used that f−1(x, ·) is 1
L

-Lipschitz on each Ok and the density of ζt is bounded

by B. Taking the limit of η → 0 shows that the conditional densities are all bounded by
B
L

.
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Finally we note that the full support of Xt follows directly from the fact that f(x, ζt)

has full support for all x ∈ R and ζt is absolutely continuous, and show the non exclusive

property in FLT 2. This follows from the Markov chain setup. Let A0 ⊂ R be all points x

such that P(A | X0 = x) > 0. ThenA0 has positive Lebesque measure asX0 is absolutely

continuous and

P (X0 ∈ A0) ≥ P(A and X0 ∈ A0) = P (A) > 0.

It follows that

P(A and B) =

∫
R
P(A and B | X0 = x)F (dx)

=

∫
R
P(A | X0 = x)P(B | X0 = x)F (dx) > 0,

where we used that P(A | X0 = x) is greater than zero on a set of positive Lebesque

measure and P(B | X0 = x) is greater than zero for all x ∈ R as f(x, ζt) has full support

for all x ∈ R and ζt is absolutely continuous.

3.6.4 Proof of Theorem 3.3.5

The existence of a stationary ergodic solution

We follow the approach used in Theorem 3.1 of Bougerol (1993) where we expand the

model equations backwards and show that this converges to a stationary ergodic solution.

We define the joint updating equation (µt, bt) = Φt−1(µt−1, bt−1), where for u ∈ R and

v ≥ 0 we have

Φt−1(u, v) = (φt−1(u, v), ψt−1(u, v)),

φt−1(u, v) = δ + ru+ γXt−1 − γv,

ψt−1(u, v) = (ω + αv)1{g(Xt−1, u, v) < 0}.
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To ease notation we write µ(0)
t = u and b(0)

t = v and then define the backward iterates

recursively for m ∈ N as

µ
(m)
t = φt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
and b

(m)
t = ψt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
.

The goal will be to show that b(m)
t is almost surely eventually constant as m → ∞ and

that limm→∞ µ
(m)
t exists. The stationary ergodic solution is then given by

(
lim
m→∞

µ
(m)
t , lim

m→∞
b

(m)
t

)
t∈Z

.

It is stationary ergodic by Corollary 2.1.3 of Straumann and Mikosch (2006) and it is a

solution since

lim
m→∞

µ
(m)
t = lim

m→∞
φt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
= φt−1

(
lim
m→∞

µ
(m−1)
t−1 , lim

m→∞
b

(m−1)
t−1

)
,

where we are allowed to swap the limit in because the second argument is eventually

constant and φt is continuous in its first argument. Similarly

lim
m→∞

b
(m)
t = lim

m→∞
ψt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
= ψt−1

(
lim
m→∞

µ
(m−1)
t−1 , lim

m→∞
b

(m−1)
t−1

)
,

where we are allowed to swap the limit in because the second argument is eventually

constant, the random variable

g
(
Xt−1, lim

m→∞
µ

(m−1)
t−1 , lim

m→∞
b

(m−1)
t−1

)
is absolutely continuous by assumption FLT 3 and the fact that g is monotone in its first

argument, and finally because g is continuous in its second argument by assumption FLT

4.

Lemma 3.6.1. The sequence b(m)
0 is eventually constant as m → ∞ and limm→∞ µ

(m)
0

converges almost surely.
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PROOF. Define

st = lim sup
m→∞

µ
(m)
t and it = lim inf

m→∞
µ

(m)
t .

The proof that the backward iterate limits above exist consists of two steps that we will

show later:

(i) We show that for every η > 0 there exists an event Aη ∈ F−1
−∞ of positive proba-

bility, such that conditional on Aη we have almost surely s0 − i0 < η and b(m)
0 is

constant for sufficiently large m.

(ii) We show that there exists an event Bη ∈ F∞−∞ that contains Aη, such that condi-

tional onBη we have st− it ≤ rt(s0− i0) for all t ∈ N. Moreover b(m)
t is eventually

constant for all t ∈ N.

Since (Xt)t∈Z is stationary ergodic there almost surely are infinitely many 0 > −t1 >

−t2 > . . . for which the event Bη shifted by tk to the right occurs. If it occurs for such a

−tk, then

s0 − i0 ≤ rtk(s−tk − i−tk) ≤ rtkη.

Taking the limit of k → ∞ then delivers s0 = i0 and thus the limit limm→∞ µ
(m)
0 con-

verges almost surely. The fact that
(
b

(m)
0

)
m∈N

is eventually constant follows immediately

from part (ii) and the same argument that the event Bη occurs for some −t < 0. �

Lemma 3.6.2. Claim (i) holds.

PROOF. We start out by showing that almost surely st − it <∞. This follows by a series

of upper bounds. Firstly we have

µ
(m)
t = δ + rµ

(m−1)
t−1 + γXt−1 − γb(m−1)

t−1 ≤ δ + rµ
(m−1)
t−1 + γXt−1

Assumptions FLT 5 and FLT 1 together with Lemma 2.1 in Straumann and Mikosch

(2006) ensure that expanding backwards and taking the limit converges, hence st < ∞.
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The infimum requires more work. Note that the Liptschitz condition of the inverse of g

in its third argument as stated in assumption FLT 4 ensure the existence of two constants

L,K > 0 such that

b
(m)
t =

(
ω + αb

(m−1)
t−1

)
1

{
g
(
Xt−1, µ

(m−1)
t−1 , b

(m−1)
t−1

)
< 0
}

=
(
ω + αb

(m−1)
t−1

)
1

{
b

(m−1)
t−1 < g−1

(
Xt−1, µ

(m−1)
t−1 , 0

)}
≤ ω + αmax

{
g−1

(
Xt−1, µ

(m−1)
t−1 , 0

)
, 0
}

≤ ω + αmax
{
K + L

(
µ

(m−1)
t−1 +Xt−1

)
, 0
}
.

It follows that

µ
(m)
t = δ + rµ

(m−1)
t−1 + γXt−1 − γb(m−1)

t−1

≥ (δ − γ(ω + αK)) + rµ
(m−1)
t−1 − γαLµ(m−2)

t−2 + γ (Xt−1 − αLXt−2) .

Again assumptions FLT 5 and FLT 1 together with Lemma 2.1 in Straumann and Mikosch

(2006) ensure that expanding backwards converges, hence it > −∞. We conclude that

st−it <∞. Note that these bounds immediately prove the moment statement in Theorem

3.3.5.

Next, we choose an M > 0 such that P (st − it < M) > 0 and let t =
⌈

log(η/m)
log r

⌉
,

where dxe is the smallest integer larger than x. Continuity of g in its second argument,

the positive probability condition in assumption FLT 4 and assumption FLT 2 guarantee

that by conditioning on the past we can show for each 0 ≤ v < t that

P
(

lim sup
m→∞

b
(m)
−v = 0

)
≥ P (g (X−v−1, s−v−1, 0) ≥ 0) > 0.

It follows by Assumption FLT 2 that there exists an event Aη ∈ F−1
−∞ of positive proba-

bility such that

st − it < M and lim sup
m→∞

b
(m)
−v = 0 for all 0 ≤ v < t.
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This then implies that

s0 − i0 = r(s−1 − i−1) + γ

(
lim sup
m→∞

b
(m)
−1 − lim inf

m→∞
b

(m−1)
−1

)
= rt(s−t − i−t) < rtM ≤ η,

which concludes the proof of part (i). �

Lemma 3.6.3. Claim (ii) holds.

PROOF. The argument will be a recursive one, conditional on Aη. Suppose that st − it <

rtη and b(m)
t is eventually constant, then

st+1 − it+1 = r(st − it) < rt+1η.

Next we show that there exists an event such that b(m+1)
t+1 is eventually constant. Note that

this holds if and only if

sign(g(Xt, it, bt)) = sign(g(Xt, st, bt)), (3.7)

where bt = limm→∞ b
(m)
t . The Lipschitz condition in assumption FLT 4 implies that there

exists a K > 0 such that

|g(Xt, st, bt)− g(Xt, it, bt)| ≤ K(st − it) < Krtη.

Moreover, the derivative being bounded away from zero by at least some B > 0 and the

monotonicity of g in its second argument implied by assumption FLT 4 then ensure that

(3.7) follows from

|g(Xt, st, bt)| > BKrtη.

We conclude that statement (ii) follows if |g(Xt, st, bt)| > BKrtη for all t ∈ N.

Next we determine the probability of this event. Let I2Krtη(st, bt) be a stochastic

interval of length Krtη such that if |g(Xt, st, bt)| ≤ BKrtη then Xt ∈ I2Krtη(st, bt).
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Then by assumption FLT 3 there exists a U > 0 such that

P
(
|g(Xt, st, bt)| ≤ BKrtη

∣∣Aη) ≤ P (Xt ∈ I2Krtη(st, bt)|Aη)

=

∫
P (Xt ∈ I2Krtη(st, bt)| st, bt, Aη) dP(st, bt)

≤
∫

2UKrtηdP(st, bt) = 2UKrtη.

It follows that

P
(
|g(Xt, st, bt)| > BKrtη, ∀t ∈ N

∣∣Aη)
= 1− P

(
|g(Xt, st, bt)| ≤ BKrtη, ∃t ∈ N

∣∣Aη)
≥ 1−

∞∑
t=1

P
(
|g(Xt, st, bt)| ≤ BKrtη

∣∣Aη)
≥ 1−

∞∑
t=1

2UKrtη ≥ 1− 2UKηr

1− r
.

This last number can be made larger than zero by choosing η sufficiently small. �

Partial solutions and continuous differentiability

The convergence of partial solutions to the true ones is essentially almost the same as the

one for the existence of a stationary ergodic solution. We can use the same bounds as in

statement (i) to show that |µ∗t | and |µ̂t| are bounded by some η with positive probability

and that their respective bubble processes are zero. It then follows by the same deriva-

tion as in part (ii) that they converge with positive probability. As (Xt)t∈Z is stationary

ergodic this event happens with probability one at some point in time and thus we get the

convergence.

Continuous differentiability follows by the same way as in Straumann and Mikosch

(2006). The stochastic recurrence equations for the derivatives of the fundamental and

bubble processes are either linear or standard resetting systems. Therefore their respec-

tive backward iterations converge to stationary ergodic solutions. This then implies the

continuous differentiability by a standard analysis result.
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3.6.5 Proof of Theorem 3.3.6

We follow the usual consistency proof for M -estimators which involves showing firstly

the uniform convergence of the sample average log likelihood to the limit log likelihood

and secondly the identifiable uniqueness of the parameter of interest; see e.g. Theorem

3.4 in White (1994) or Lemma 3.1 in Pötscher and Prucha (1997). To ease notation we

define the following functions Θ→ R:

ˆ̀
t = `(Xt, µ̂t(·, λ), b̂t(·, λ), σ2),

`∗t = `(Xt, µ
∗
t (·, λ), b∗t (·, λ), σ2).

Lemma 3.6.4. The sample average log likelihood almost surely converges uniformly to

the limit log likelihood, i.e.

∥∥∥L̂T − E`∗t
∥∥∥

Θ

as→ 0 as T →∞.

PROOF. We have

∥∥∥L̂T − E`∗t
∥∥∥

Θ
=

∥∥∥∥∥ 1

T

T∑
t=2

ˆ̀
t − E`∗t

∥∥∥∥∥
Θ

≤ 1

T

T∑
t=2

∥∥∥ˆ̀
t − `∗t

∥∥∥
Θ

+

∥∥∥∥∥ 1

T

T∑
t=2

`∗t − E`∗t

∥∥∥∥∥
Θ

.

(3.8)

We will show that the two rightmost terms in (3.8) go to zero as T → ∞. For the first

term note that ` is a differentiable function, we write

`f (µ̃, b̃) =
∂`(Xt, µ, b, σ

2)

∂(µ, b)

∣∣∣∣
(µ̃,b̃)

.

We then invoke the mean value theorem to obtain the existence of some (µ̃t, b̃t) between

(µ̂t, b̂t) and (µ∗t , b
∗
t ) that satisfies

∥∥∥ˆ̀
t − `∗t

∥∥∥
Θ
≤
∥∥∥`f (µ̃t, b̃t)∥∥∥

Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

≤
∥∥∥`f (µ̃t, b̃t)− `f (µ∗t , b∗t )∥∥∥

Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ
(3.9)

+ ‖`f (µ∗t , b∗t )‖Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ
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The function `f is linear in its arguments and thus is a K-Lipschitz function for some

K > 0. Therefore assumption CS 2 guarantees that

∥∥∥`f (µ̃t, b̃t)− `f (µ∗t , b∗t )∥∥∥
Θ
≤ K

∥∥∥(µ̃t, b̃t)− (µ∗t , b
∗
t )
∥∥∥

Θ

≤ K
∥∥∥(µ̂t, b̂t)− (µ∗t , b

∗
t )
∥∥∥

Θ

eas→ 0 eas t→∞ ,

hence (3.9) almost surely goes to zero exponentially fast by assumption CS 2 and thus we

have

1

T

T∑
t=2

∥∥∥`f (µ̃t, b̃t)− `f (µ∗t , b∗t )∥∥∥
Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

as→ 0 as T →∞.

Next, note that
(
‖`f (µ∗t , b∗t )‖Θ

)
t∈Z is a stationary sequence by assumption CS 2 and

Proposition 4.3 in Krengel (1985). Therefore

1

T

T∑
t=2

‖`f (µ∗t , b∗t )‖Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

as→ 0 as T →∞

if ‖`f (µ∗t , b∗t )‖Θ has a log moment by assumption CS 2 and Lemma 2.1 in Straumann and

Mikosch (2006). Let log+(x) = max{0, log x}. The log moment follows from the fact

that

E log+ ‖`f (µ∗t , b∗t )‖Θ =
1

σ2
E log+

∥∥∥∥∥∥ Xt − µ∗t − b∗t
Xt − µ∗t − b∗t

∥∥∥∥∥∥
Θ

,

the finiteness of which is implied by the moment conditions in assumptions CS 1 and CS

2. We conclude that the first term in (3.8) converges to zero almost surely.

Finally, we discuss the second term in (3.8). We show that∥∥∥∥∥ 1

T

T∑
t=2

`∗t − E`∗t

∥∥∥∥∥
Θ

as→ 0 as T →∞

by application of the uniform law of large numbers, Theorem 2.7 in Straumann and

Mikosch (2006). The law of large numbers holds since (`∗t )t∈N is strictly stationary and
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ergodic by assumption CS 2 and Proposition 4.3 in Krengel (1985), and because

E ‖`∗t‖Θ = E
∥∥∥∥1

2
log(2πσ2)− 1

2σ2
(Xt − µ∗t − β∗t )2

∥∥∥∥
Θ

≤
∥∥∥∥1

2
log(2πσ2)

∥∥∥∥
Θ

+ c

∥∥∥∥ 1

2σ2

∥∥∥∥
Θ

(
EX2

t + E ‖µ∗t‖
2
Θ + E ‖b∗t‖

2
Θ

)
,

for some c > 0. This upper bound is finite by assumption CS 2, because Θ is compact

and the fact that σ2 > 0. �

Lemma 3.6.5. The parameter θ0 is identifiable unique on Θ.

PROOF. The identifiable uniqueness of θ0 ∈ Θ is implied by the uniqueness assumption

CS 3, the continuity of E`∗t and the compactness of Θ, see Chapter 3 in Pötscher and

Prucha (1997). The continuity of E`∗t follows directly from the fact that the sample like-

lihood, which is continuous, converges uniformly to E`∗t . �

3.6.6 Proof of Corollary 3.3.7

Theorem 3.3.6 ensures that (µ∗t , b
∗
t )t∈Z = (µt, bt)t∈Z, so that condition CS 2 follows.

The maximiser of the limit log likelihood is equal to the minimiser of the Kullback-

Leibler divergence between the true conditional density of the data and the model-implied

conditional density, see for instance Section 2.3 of White (1994). Therefore it follows

by the Gibbs inequality that the limit log likelihood is uniquely maximised at the true

parameter θ0 and thus condition CS 3 holds for the true parameter.

3.6.7 Proof of Theorem 3.3.8

This proof is identical to Section 7 of Straumann and Mikosch (2006).

3.6.8 Proof of Theorem 3.3.9

The desired result follows by the same argument as used above for proving asymptotic

normality under correct specification, with the exception that the score is not granted to
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be a martingale difference sequence. However, by assumptions AN 5 and AN 6, we have

that the score sequence is near epoch dependent of size −1 on a φ-mixing sequence of

size −r/(r − 1) for some r > 2. Given the moment bounds, we can thus appeal to the

central limit theorem for near epoch dependent sequences in Potscher and Prucha (1997,

Theorem 10.2).
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